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Calculation of the single-particle basis hamiltonian from inter- 
nucleon interactions 
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Research Physical Institute, Leningrad State University, Leningrad 199164, USSR 
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Abstract. The approximate relativistic equation (relativistically invariant to within terms 
in uZ/c2)  for a system ofnucleons is used in this paper as the starting point to obtain the nuclear 
average field, isobaric-spin potential and spin-orbit potential. Calculations are carried out 
in the framework of the Hartree-Fock approximation. Accounting for the wavefunction 
of proper symmetry noticeably improves the agreement with experiment. The nuclei 41Ca 
and lo9Pb are considered for illustration, different variants of the two-particle interactions 
of the OBEP type being utilized. 

1. Introduction 

Both the nuclear structure theory and the theory of internucleon interactions are 
developing at present, to a large extent independently and loosely coordinated. Chiefly 
employed in the theory of nuclear structure .are either simplified model interactions or 
interactions in the form of the conventional mixture of the forces of Wigner, Bartlett, 
Heisenberg and Majorana with a large number of fitting parameters. At the same time 
the theory of internucleon interactions has made essential progress in recent years, 
being based increasingly on the meson theory of nuclear forces in the variant of the so- 
called one-boson exchange potentials-the OBEP-which include pseudoscalar (P), 
scalar (S) and vector (V) mesons (Bryan and Scott 1964,1969, Green and Sawada 1967, 
Ingber 1968). However, only the nucleon-nucleon scattering data (and partly, the 
deuteron data) are utilized for constructing and fitting the OBEP, nuclear structure being, 
as a rule, ignored. 

It is evident that such a gap is harmful both for the theory of internucleon interactions 
and for the theory of nuclear structure and that a sufficiently trustworthy picture may 
be obtained only by correlation and coordination of the two theories. 

In the paper by Krutov (1973) the program of construction of the approximate 
relativistic theory of the nucleus (to be referred to as ART) was briefly formulated, it started 
from the relativistic (to within terms in v 2 / c z )  two-nucleon equation of the Breit type 
(Breit 1937) taking into consideration all necessary intermediate mesons and resonances. 
Use of the Hartree-Fock procedure for solving the many-nucleon problem was supposed 
to be the first step in the realization of the program with the further accounting for the 
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nondiagonal part of the interaction (ie, for the so-called 'residual interactions' in con- 
ventional terminology). 

Execution of the program was started in Krutov and Savushkin (1973), where the 
single-particle spin-orbit potential V,, and average field V,, were calculated starting 
from the nucleon-nucleon OBEP-type interactions, the values obtained for 41Ca and 
'O'Pb being in reasonable agreement with the experimental values. However, calcula- 
tions in that paper were performed in the framework of the Hartree approximation. 
In the present paper calculations of the spin-orbit potential V,, and of the average field 
V,, are carried out in the Hartree-Fock approximation ($6 2 4 ) ,  which improves the 
agreement with experiment. Moreover, in the present paper we obtain the isobaric- 
spin potential V,, (§$ 3,4) by the Hartree-Fock method. Thus, in the present paper 
starting from the internucleon interactions we obtain the single-particle hamiltonian 
which forms the basis states for solving the many-nucleon problem. 

In a subsequent paper (11) the authors intend (resting on the single-particle basis 
hamiltonian obtained in I) to consider the description of binding energies, spectra and 
states of nuclei in the framework of the ART. Special attention will be paid to formation 
of the so-called collective nuclear states. 

Finally, in the third part of the paper (111) we shall revise the set of mesons and 
resonances of the OBEP variants utilized in I and I1 and refine the interaction in the sense 
of extension of the exchange potentials. 

Actually, in the present paper I and in the subsequent paper I1 we utilize in the 
calculations the OBE potentials available from papers by Green and Sawada (1967).and 
Ueda and Green (1968). However, apart from the incomplete adequacy of the OBEP 
from a theoretical point of view, because of the nature of the OBEP approximation (ie 
assuming the hypothetical S meson etc) the OBE potentials should be fitted, as is evident 
from the paper by Krutov and Savushkin (1973) and from the present paper, not only to 
the nucleon-nucleon scattering data and deuteron data (as is done in papers by Green 
and Sawada 1967 and Ueda and Green 1968) but simultaneously to the calculations (with 
the OBEP) of the single-particle nuclear potential (spin-orbit potential, average field and 
isobaric-spin potential)?. It gives an additional criterion which is essential for the proper 
determination of internucleon interactions. It is just the inadequate choice of the 
mesons and resonances (besides the limitedness of the OBE potentials) which are available 
from the papers mentioned above and utilized here that causes the theoretical values 
Vso, V,,, V,, obtained in this paper to  differ somewhat from experimental values (see the 
discussion in $4). At the same time the difference may be considered as not being a 
matter of principle, and agreement between theory and experiment as rather satisfactory 
especially taking into account the fact that the theoretical values are obtained with the 
OBE potentials fitted to totally independent data on the nucleon-nucleon scattering. 
It shows once more that the concept of the OBE potentials is fruitful, but they also need 
refinement in the sense stated above. 

At the same time the scheme of the ART in itself (the scheme of calculations of the 
single-particle basis hamiltonian, binding energies, nuclear spectra, transitions, etc from 
internucleon interactions) depends only slightly on the choice of mesons and resonances 
of the OBEP and will remain almost unaltered after subsequent refinement and revision 
of this choice. For this reason we considered it to be advisable to  present the scheme of 
the ART and to perform calculations based on the available variants of the OBE potentials 
before accomplishment of the work OD revision of the OBEP since this work is laborious 
and time consuming. 
t And later to calculations of the binding energies, nuclear spectra and transitions as well. 
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2. Average field and isobaric-spin potential 

The relativistic Breit-type equation (Breit 1937) with two-particle forces due to the 
exchange of pseudoscalar, vector and scalar mesons is the starting point for the present 
paper as well as for the previous one (Krutov and Savushkin 1973). This equation may 
be obtained by the method suggested by Fock (1934) and it is written for two nucleons, 
for example, in the paper by Green and Sawada (1967). For an A nucleon system it has 
the following form : 

here y 5  = P , i 1 y 2 y 3 ,  y = pa, a is the Dirac matrix vector; zi is the isospin matrix of the 
ith nucleon ; Zs, E,, Cp indicate summation over isoscalar scalar, vector and pseudoscalar 
mesons, respectively; sums EST, CVr, ZPr are related to isovector mesons with the same 
space-time transformation properties ; 4 is a relativistic wavefunction of an A-nucleon 
system, ie, the direct product of A bispinors; E is the total energy of a stationary state 4. 

are the functions of the distance between the particles 
rik = Iri - rkJ, they may have different representations but to obtain adequate fitting to the 
nucleon-nucleon scattering data (with the OBE potentials) the repulsive core should be 
brought into these functions in one form or another. 

To try to solve the many-nucleon problem with equation (1) directly would be a fairly 
difficult, and at the same time unnecessary (because of the approximate nature of 
equation (l)), undertaking. That is why we reduce these equations to the v 2 / c 2  limit, 
ie, we write them down for only the 'large' component (we designate it as II/) of the 
wavefunction, excluding the 'small' component. After performing the reduction we 
obtain the approximate relativistic equation (relativistically invariant to within terms in 
v2/c2) ,  which is the starting point for the subsequent investigation : 

Two-particle potentials 
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In equation (2)pjk = pi -pk(rik is defined similarly); 6V:i' are the relativistic corrections 
to the internucleon interaction of the order u2/c2 which do notapossess the form of the 
spin-orbit forces (we shall discuss these corrections in 11); fv'  and gv' are, respectively, 
the tensor and vector coupling constants of vector isovector mesons with nucleons. In 
equation (2)  we have divided the spin-orbit interaction into two parts : the galilean in- 
variant operator V:: and the operator 6V:; which is non-galilean invariant. The non- 
galilean invariant forces may appear only in a system consisting of more than two 
particles, ie, in the case when each pair is moving in the field formed by the remainder 
of the nucleus. 

Equation (2a) has the form ofthe conventional Schrodinger equation for an A-nucleon 
system. In the framework of the Hartree-Fock approximation all nucleons are considered 
as moving in a total, generally speaking, nonlocal potential, and the wavefunction $ 
is represented by a Slater determinant of single-particle wavefunctions which depend on 
the space, spin and isospin coordinates of one nucleon. These single-particle wave- 
functions are the solutions of the following Hartree-Fock equations : 

where c i  are the single-particle nucleon energies, 5 designates the set of the space, spin 
and isospin coordinates of a nucleon,J d <  includes integration over space and summation 
over spin and isospin variables. 

Let us consider the contribution of the static terms to the average field, ie, in equation 
(3) we take p(5, e) = vi,. In the present paper we take into account the proper symmetry 
of the wavefunction and in this sense we speak about the Hartree-Fock approximation 
although here, as in Krutov and Savushkin (1973), we do not carry out the self-con- 
sistency procedure. We suppose that the nucleon density distribution has the following 
form: 

dr) = 1 I $k(r?  o? 2, (4) 
k < A  

U , [  

where summation over spin and isospin variables is performed, $ k  are solutions of 
equation (3). 

To calculate the average field, we shall utilize.the short-range limit for the two-particle 
forces given by (2b), ie, we shall assume that the single-particle wavefunctions $i do 
not change essentially at  distances of effective radius of nuclear forces (2b). Since only 
heavy mesons and resonances are important in our calculations (the exchange by the 
n meson makes no contribution to the basis single-particle hamiltonian in the static 
limit), the short-range approximation is sufficiently justified to be used for our purposes. 
In the framework of this approximation the nonlocal Hartree-Fock potential is reduced 
to the local one and we obtain the following equation for an even-even nucleus or for 
an odd nucleon in an odd nucleus : 

where 
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where p,(r) and p,(r) are the neutron and proton densities, respectively. I t  should be 
noticed that in contrast to Krutov and Savushkin (1973) we have here separated the 
isobaric-spin potential V,, from Vav. Obtaining equations (5) we made use of the 
following relation : 

where 5' may be both different from and equal to t .  Relation (6) follows from the fact 
that in an even-even nucleus the state obtained from an occupied state by the time- 
reversal operator is also occupied (if we consider the average field for an odd nucleon in 
the Hartree-Fock approximation, we may, as formerly, perform summation over the 
even-even core). 

As is seen from equations ( 5 ) ,  the difference between the Hartree-Fock and Hartree 
approximations (cf equation (26b), Krutov and Savushkin 1973) is essential in calculation 
of K,: as for the isobaric-spin potential I/s, the Hartree-Fock and Hartree methods 
lead in general to  quite different results (cfequation (5c)of the present paper and equation 
(26b) of Krutov and Savushkin 1973). 

Values of V,, and V,, calculated with different variants of OBEP are presented in 9 4. 

3. Relativity and spin-orbit interaction in nuclei 

Consider now calculation of the spin-orbit potential on the basis of equations (2) using 
the technique outlined in the preceding paper (Krutov and Savushkin 1973) in which 
the spin-orbit interaction in the nucleus has been considered in the Hartree approxima- 
tion. In the present paper we make use of the Hartree-Fock approximation. 

First of all we notice that the operator 6Vy: plays a less important role than the 
galilean-invariant operator V:: since 6Vy: is proportional to the diference of the contri- 
butions from scalar and vector mesons. As was shown by Krutov and Savushkin (1973), 
the value of the spin-orbit potential is determined by the sum of the contributions from 
scalar and vector mesons whereas the average field is determined by the difference of 
their contributions. Thus, the contribution from 6 V F  to the spin-orbit splittings is 
approximately of the same magnitude as that from the Thomas coupling, ie, is by one 
order of magnitude smaller than the contribution from V g .  Therefore we shall omit 
this operator in this section (the contribution from this operator to the spin-orbit 
splittings is taken into account, however, in the results given in table 1, see also appendix 
1). 

The spin-orbit splittings are expressed in terms of the spin-orbit force contributions 
to the single-particle energies in the following manner: 

(7a) AE;? = E70( j  = I - ~ ) -  ' c s o ( j  = I + ? )  1 

where in the Hartree-Fock approximation 
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Table 1. Spin-orbit splittings obtained in the framework of the Hartree-Fock approximation 
for the following variants of two-body forces: a, Green and Sawada (1967); b, Ueda and 
Green (1968) (model 11); c, Ueda and Green (1968) (model 111); d, Stagat et al 1971). The 
spin-orbit splittings in the Hartree approximation are given in parenthesest 

~ 

a b C d Experimental 
data 

AES(;)(4 'Ca) 13.8 3.55 
(9.32) (1.75) 

AEs:(4 'Ca) 3.30 0,843 
(2.22) (0.415) 

A c ( 2 0 9 P b )  3.53 0,845 
(2.22) (0.422) 

AEE(209Pb) 11.2 2.70 
(7.08) (1.35) 

AE::(209Pb) 2.03 0.487 
(1.28) (0.243) 

4.63 
(2.42) 

1.10 
(0.577) 

1 . 1 1  
(0.588) 

3.56 
(1.87) 

0.644 
(0.339) 

3.06 6.50 
(1.57) 

0.728 2.00 
(0.373) 

0.736 2.47 
(0.380) 

2.34 4.57 
( 1.20) 

0.423 0.98 
(0.218) 

t All quantities are given in MeV. The relative thickness of the surface layer T is assumed to 
be 0.4. 

The direct matrix element in (7b) is the same as that calculated formerly in the 
Hartree approximation (Krutov and Savushkin 1973). So it remains to calculate the 
exchange matrix element. To this end we write the wavefunction for two nucleons in the 
form 

1 i k )  = [vi: )(r, r') + &)(r ,  U')] '(0, 0') + ~ 7 ;  '(0, d ) ] X i ( ? ) X k ( t ' )  ( 8 4  
with 

ie, & is the spin wavefunction with spin S ;  cpj:' contains, obviously, only even relative 
angular momentum states of nucleons, and c&' contains only odd ones. 

The interaction V:: acts only in S = 1 states because of the presence of the operator 
of doubled spin ( t s i + t s k ) .  Moreover, we may take into account the interaction only in 
relative P states according to the short-range approximation adopted. Introducing the 
notation 

one gets 

Taking into account all said above, the contributions from corresponding mesons to 
single-particle energies in the Hartree-Fock approximation may be expressed in terms 
of those in the Hartree approximation in the following manner : 
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where €7: denotes the contribution only from nucleons of the same kind (neutrons or 
protons) as the nucleon in state i. 

When the wavefunctions of proper symmetry are used we ,define the single-particle 
spin-orbit potential as follows 

We confine ourselves to nuclei with one nucleon (in state i) above the doubly closed 
shell containing A -  1 = N + Z  particles and use, as well as above, the short-range 
approximation. Then after having used the same technique as that in Krutov and 
Savushkin (1973), one obtains? 

where it is assumed that 

From (12) the relation for the spin-orbit splittings of the same neutron and proton 
states, evidently, follows 

=- A + N  > 1 AE:y(neutron) 
AEEF(proton) A + 2 

Notice that relation (14) does not correspond to the empirical analysis of Ross et al(1956) 
which was utilized by Krutov (1973). However, the isobaric-spin dependence of the 
spin-orbit splittings has not yet been determined reliably. 

4. Calculation of spin-orbit splittings, average field, and isobaric-spin potential with 
OBEP interaction: discussion 

In §§ 2-3 we have obtained the basis single-particle hamiltonian in the form : 

where Kv(i), FS(i), and V,(i) are given by equations (5b), (5c), and (12), respectively. 
Consider now numerical calculations of the spin-orbit splittings AEEy and the values 

t See also the derivation of equation (10) where the technique of calculating the exchange term is given. 
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of the average field and isobaric-spin potential using different two-body forces. We 
employ in these calculations the same computational model as in the paper by Krutov 
and Savushkin (1973), ie, we assumed a trapezoidal density distribution for p(r) and 
make use of infinite-rectangular-well single-particle wavefunctions in calculating 
AE$'. 

The results ofcalculations ofthe spin-orbit splittings in the Hartree-Fock approxima- 
tion obtained with different OBE potentials are given in table 1 .  Our present calculations 
are carried out for the relative thickness of the surface layer T = 0.4 so that 
R = 1.33A'/3 fm corresponds approximately to RI/ ,  = 1-07A'/3 fm (see Krutov and 
Savushkin 1973). 

The results of calculations of V,, and V,, are given in table 2. Let us dwell on the 
isobaric-spin potential. Assuming ( 1  3 )  one finds 

where v;ift is just the symmetry-energy parameter denoted usually as V, . To determine 
the value of this parameter, a very simple 'occupation-number method' has been 
suggested (Krutov and Savushkin 1969) (note that here and in the paper by Krutov and 
Savushkin 1969, the signs of T~ and 2t3 are chosen differently). According to this method, 
VI is obtained from the difference of the proton and neutron well depths, this difference 

Table 2. The values of the neutron average field and isobaric-spin potential obtained in the 
framework of the Hartree-Fock approximation for the same variants of two-body forces as 
in table 1. To make comparison with the results obtained in the Hartree approximation 
(Krutov and Savushkin 1973) (figures in parentheses), more convenient we included ys  
into V,, in this tablet 

a b C d Experi- 
mental data 

t . ( 4 1 ~ a )  - 34.0 - 56.2 - 60.8 - 20.8 
( -45.3) ( - 73.3) ( - 85.4) ( -  29.8) 

E,(209Pb) -31.7 - 52.6 - 57.7 - 19.9 
(-45.3) ( -  72.7) ( -  86.1) ( -  30.4) 

v::' (4 I Ca) - 27.1 - 44.8 - 48.4 - 16.6 -46.1 

V::'(209Pb) - 25.3 -41.9 -45.9 - 15.8 - 53.4 

U;:(' O9 P b) 36.1 64.4 46.7 13.8 794  

( - 36.1) ( - 58.4) ( -  68.0) ( -  23.7) 

(-36.1) (-57.9) (-68.6) (-24.2) 

(0) (8.1 1 )  ( -  12.7) ( - 8.98) 

t A11 quantities are given in MeV. The relative thickness of the surface layer T is assumed to 
be 0.4. The experimental values of V:t' are taken from the proton scattering data (Greenlees 
and Pyle 1966), for neutrons the experimental values of 1V~~'l for 2osPb must be somewhat 
smaller than 53.4. 

t The value U$' is determined similarly to V:;' by the relation 6,s(R,,2)* = U$' (R$)~  since, in accordance with 
(13), the effect of the isobaric-spin potential reduces to lowering or raising the nuclear potential well without its 
distortion. 
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being determined by the difference of the neutron and proton numbers N and Z :  

2 A  
= Vl = (AV,,+ l/couI) ___ A - 2 2 '  

In accordance with (17) one has v;;ff = 79.4 MeV for "'Pb. This value is just given 
in table 2 as the experimental one. The data given in tables 1 and 2 show that the Hartree- 
Fock approximation gives essentially better results than the Hartree approximation. 
Indeed, the Hartree-Fock approximation leads to larger values of AE;?, affecting the 
value of V,, to a lesser extent (ifcompared to the Hartree results). The Hartree approxima- 
tion is not effective in calculating the isobaric-spin potential, whereas the Hartree-Fock 
approximation is able to give a result close to the experimental one (for two-body forces 
b and c, see table 2). 

Accounting for the proper symmetry of the wavefunctions for determining the basis 
single-particle hamiltonian (carried out in the present paper) considerably reduces the 
number of possible sources of discrepancy between theoretical and experimental values. 
The remaining origins are the following : (i) the short-range approximation ; (ii) approxi- 
mate character of the computational model ; (iii) limiting to the first step of the iteration 
self-consistent procedure : (iv) neglect of the 'residual interactions': (v) insufficiency of 
the OBE potentials. 

The short-range approximation has been discussed above and the corresponding 
corrections will be considered in the future. The approximate character of the computa- 
tional model has been discussed by Krutov and Savushkin (1973) and shown to cause 
errors which are not very essential. Consideration of the density in the form of equation 
(4) and modelling this density by the trapezoidal distribution with the half density radius 
Rl i ,  = 1.07Ali3 fm enables us to avoid the principal difficulties ofthe iteration procedure 
and leads to sufficiently accurate results even in the first stage. The neglect of the residual 
interactions for near-magic nuclei 41Ca and '09Pb is hardly essential for the quantities 
calculated in the present paper. This follows, for example, from the fact that pairing- 
correlation effects do not occur in these nuclei (occupation numbers are equal to 1 or 0). 

Therefore the main source of the discrepancy between the quantities AE;?, Vztf and 
V;if calculated in this paper and the experimental ones is, probably, insufficiency of the 
OBE potentials used. This conclusion is supported also by the fact that different OBE 
potentials yield very different results (see tables 1 and 2). As was mentioned in the 
introduction, calculation of V,, V,,, Y s  should be one of the criteria for choosing the 
proper OBEP. In particular, our calculations show (see case d in tables 1 and 2) that the 
'realistic' OBE potential of Stagat et a1 (1971) is inferior when applied to the many-particle 
problem (or more accurately, in calculating the single-particle basis hamiltonian). 
However, to avoid misunderstanding, it should be noted that our results are, in general, 
the arguments in favour of the OBE potentials, since the discrepancy of the calculated 
and experimental quantities is not very significant. This discrepancy is not a matter of 
principle, the ways to eliminate it being clear. Meanwhile, our calculations performed 
for usual Wigner, Bartlett, Heisenberg and Majorana mixture forces indicate (see 
Krutov and Savushkin 1973) that these forces cannot, in principle, give reasonable 
values simultaneously for the average field and spin-orbit splittings, if we start from the 
approximately relativistic equation of the Breit type. The use of such forces in nuclear- 
structure theory is, from our point of view, a palliative. In simplified working models, 
more simple interactions appear to be advisable for usage (see, eg Krutov 1973). In 
more precise theories the OBEP interactions and still more exact forces are to be employed. 
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Appendix 1. Non-galilean part of the spin-orbit interaction 

In this appendix we discuss the non-galilean spin-orbit interaction 6 V:: in equations (2). 
The contribution from this interaction to spin-orbit splittings may be evaluated in the 
Hartree approximation in the same manner as that from the galilean interaction. There- 
fore it is sufficient to consider only the exchange matrix elements 

The consideration is simplified greatly in the case of using the L-S coupling. Of course, 
thej-j coupling is more preferable for nuclei ; however, the more approximate accounting 
for the interaction 6V:F may be justified by the small value of this operator. Furthermore, 
the L-S coupling appears to be correct, as will be shown below, for the so-called spin- 
saturated nuclei (ie, the nuclei with completely occupied or completely empty spin-orbit 
doublets). Since addition of an extra nucleon does not affect the spin-orbit splittings in 
the Hartree-Fock approximation (and supposing that the wavefunctions of the other 
nucleons are not altered by the extra nucleon), we may apply the consideration given 
below also to spin-saturated-plus-one-nucleon nuclei (ie, for 'Ca). 

Consider the sum of the exchange matrix elements over the spin-saturated core, ie, 
over all nucleons except one in state i : 

8, = 1 (iklSV::",Oli). (A. 1) 
L Q A -  1 

For spherical-symmetry reasons we have 

Since according to (A.1) and (A.2) the quantity A contains summation over spin 
saturated sets of states (both k and i), for states k and i we may employ the L-S scheme 
instead of the j-j scheme. Suppose, in addition, the radial wavefunctions for j = I &  + 
are close to each other. Then the matrix element (iklai-a,lki) is equal to zero. Indeed, 
the third components of a, and ak cancel, the other two components do not contribute 
because of the spin-projection conservation. Therefore we have A = 0. 

On the other hand, for state i with the projection of the magnetic quantum number 
m = j = l+$ both schemes (L-S andj-j) coincide. Therefore, due to spherical symmetry 
we have 8 j = l + +  = 0. From the latter relation, equation (A.2) and A = 0, one obtains 
8 j = r - +  = 0. Then we conclude that the exchange terms of 6Vf: do not contribute to the 
spin-orbit splittings for spin-saturated nuclei (as is also the case in utilizing the L-S 
coupling for spin-nonsaturated nuclei). 
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